Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
نویسندگان
چکیده
منابع مشابه
Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملa hybrid feature subset selection algorithm for analysis of high correlation proteomic data
pathological changes within an organ can be reflected as proteomic patterns in biological fluids such as plasma, serum, and urine. the surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (seldi-tof ms) has been used to generate proteomic profiles from biological fluids. mass spectrometry yields redundant noisy data that the most data points are irrelevant features ...
متن کاملFeature Subset Selection using Rough Sets for High Dimensional Data
---------------------------------------------------------------------***--------------------------------------------------------------------Abstract Feature Selection (FS) is applied to reduce the number of features in many applications where data has multiple features. FS is an essential step in successful data mining applications, which can effectively reduce data dimensionality by removing t...
متن کاملConstrained Based Feature Subset Selection Algorithm for High Dimensional Data
Feature Selection is to selecting the useful features from the original dataset for improve the more accurate results. Constrained Based Feature Subset Selection(CFSS) Algorithm Removes irrelevant and redundant features. This method is to find a similarity computation based on the entropy and conditional entropy values. After computing similarity computation to applied Approximate Relevancy(AR)...
متن کاملH-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data
Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence Research
سال: 2020
ISSN: 1927-6982,1927-6974
DOI: 10.5430/air.v9n1p45